Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS).
نویسندگان
چکیده
In this report, a simple and highly selective homogeneous sandwich immunoassay was developed for ultrasensitive detection of Staphylococcal Enterotoxin B (SEB) using Surface Enhanced Raman Scattering (SERS). The assay uses polyclonal-antibody functionalized magnetic gold nanorod particles as capture probes for SEB, which can be collected via a simple magnet. After separating SEB from the sample matrix, they are sandwiched by using binding-specific antibody-antigen pairs with the help of gold nanorod particles. Gold nanorod particles are bifunctional by design and contain self-assembled monolayers (SAMs) of a SERS tag molecule (5,5-dithiobis (2-nitrobenzoic acid), DTNB) and carboxylic functionalities of DTNB for coupling with a suitable antibody. The correlation between the SEB concentration and SERS signal was found to be linear within the range of 3 fM to 0.3 μM. The limit of detection for the assay was determined to be 768 aM (ca., 9250 SEB molecules per 20 μL sample volume). The gold heterogeneous assay system for SEB detection was also compared with the same SERS probes and gold-coated surfaces as capture substrates. The developed method was further evaluated for detecting SEB in artificially contaminated milk. Finally, the method was used for investigating the SEB specificity on bovine serum albumin (BSA) and avidin.
منابع مشابه
Detection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملUltrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma
An ultrasensitive surface-enhanced Raman scattering (SERS) immunoassay based on diatom biosilica with integrated gold nanoparticles (AuNPs) for the detection of interleukin 8 (IL-8) in blood plasma has been developed. The SERS sensing originates from unique features of the diatom frustules, which are capable of enhancing the localized surface-plasmon resonance of metal nanostructures. The SERS ...
متن کاملStreptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering.
An immunoassay based on surface enhanced Raman scattering (SERS) spectroscopy was developed to detect muramidase released protein (MRP) antibody against Streptococcus suis II (SS2) utilizing thorny gold nanoparticles (tAuNPs) as SERS substrates. Initially, tAuNPs with multi-branches were prepared by the seed-mediated growth method in the absence of templates and surfactants, facilitating p-merc...
متن کاملSurface-enhanced Raman scattering and biophysics
Surface-enhanced Raman scattering (SERS) is a spectroscopic technique which combines modern laser spectroscopy with the exciting optical properties of metallic nanostructures, resulting in strongly increased Raman signals when molecules are attached to nanometre-sized gold and silver structures. The effect provides the structural information content of Raman spectroscopy together with ultrasens...
متن کاملA sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid / methotrexate.
A highly sensitive surface enhanced Raman scattering (SERS) substrate with particle-film sandwich geometry has been developed for the label free detection of folic acid (FA) and methotrexate (MTX). In this sandwich structure, the bottom layer is composed of a copper foil decorated with silver nanoparticles synthesized by the galvanic displacement reaction, and top layer is constituted by silver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 137 20 شماره
صفحات -
تاریخ انتشار 2012